Understanding Data Quality in linked administrative data

Florian Endel¹

 $^1 {\rm Vienna}$ University of Technology, florian@endel.at

IHDL Conference Vancouver, 2014-04-30

Outline

Introduction & Background

- Data Linkage in Austria
- Motivation

2 Approaching Data Quality

- Data Quality: Dimensions & Metrics
- Supporting Software
- Solutions in GAP-DRG
 - Profiling
 - Database
 - DQA Reports
 - Interactive QA

Outline

Introduction & Background Data Linkage in Austria

- Motivation
- Approaching Data Quality
 Data Quality: Dimensions & Metrics
 Supporting Software
- Solutions in GAP-DRG
 - Profiling
 - Database
 - DQA Reports
 - Interactive QA

Data Linkage in Austria

- Health insurance in Austria
 - public & mandatory
 - different providers, fragmentation
 - social security number: Unique Patient Identifier
- Covered years:
 - 2006 2007 whole country
 - 2008 2011/12 one province $(\sim \frac{1}{8})$
- Content: claims data
 - inpatient, outpatient (GP, specialist), pharmacies
 - socio-economic factors, demography
 - "imputed" information: ATC \leftrightarrow ICD(10)
 - master data, meta data
- \sim 8 million people, 2.5 billion datasets

Data Quality: Open questions

- Many open and eligible questions:
 - What is the quality of the data?
 - Variation of quality? Depending variables?
 - Differences between data quality and system effects?
 - How can quality be improved?
- Analysis and interpretation of results
 - "intuitive" knowledge about quality
 - appropriate & usable documentation
- What are dimensions of data quality?
- How can they be measured and communicated?

Outline

Introduction & Background

 Data Linkage in Austria
 Motivation

Approaching Data Quality
 Data Quality: Dimensions & Metrics
 Supporting Software

Solutions in GAP-DRG

- Profiling
- Database
- DQA Reports
- Interactive QA

Approaching Data Quality

Solutions in GAP-DRG

Dimensions of data quality

- Various possibilities & publications
- e.g.
 - accuracy, completeness, consistency, timeliness
- No general agreement on dimensions, meaning, metrics
 - e.g.: missing vs. not existing vs. unknown
- Is it worth the effort? What does it cost?

Supporting Software

- No structured assessment!
- Many solutions: dataqualitypro.com/software-directory
- Various properties to be accounted
 - licensing, platform, customizability, documentation, support, ...
- Restrictions (in our project)
 - price, platform (Linux), no internet connection
- Common problems
 - resource consumption & amount of data
 - flexibility
 - (graphics & statistics)

Outline

Introduction & Background
 Data Linkage in Austria
 Motivation

Approaching Data Quality
 Data Quality: Dimensions & Metrics
 Supporting Software

Solutions in GAP-DRG

- Profiling
- Database
- DQA Reports
- Interactive QA

Solutions in GAP-DRG: Overview

- Raw data: before the import/integration
- Monitoring data integration
- Ensuring minimal quality in the database
 - constraints
 - referential integrity
- Reporting on quality aspects: profiling
- Interactive exploration
- Data Quality Assessment reports
- From quality assessment to data analysis

Profiling

- Automatic summary of data
- Per variable / data type
- Only simple interactions, partitions and aggregations
- Large amount of information
- Easy & fast to create and read
- Repeat when
 - new data arrives
 - data is transformed / cleaned
- SQL & R & LATEX

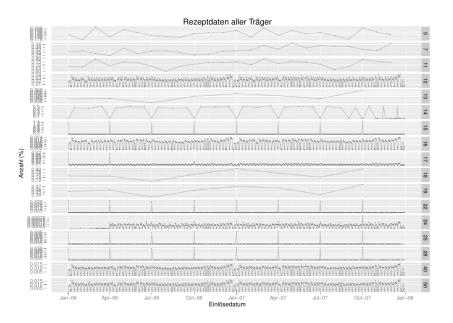
Approaching Data Quality 00

Profiling: example 1

abrv	rtr 22193	missing 277345	unique 1	Mean 12										
kat	n 22193	missing 277345	unique 926	Mean 27436	.05 1070	$^{.10}_{1300}$	$.25 \\ 5080$.50 11020	.75 32020	.90 99999	.lutuuuu. .95 99999		0. s. s.	. I
lowest highes	t: 85030	60 7 85033 9903	70 999 3 31 99032 99	1001 9999										
posb		missing 377	unique 154469											
lowest highes		OXID ILSG	2MG/ML	10ST		0.25 ZYVO)	x 6 mm KID ILSG	/ 31 G 2MG/ML	100 Stk. B 10ST	(J01XX)	0.30 x 8 ZYVOXID	B mm / ILSG :	30 G 100 2MG/ML BT) Stk. L.10ST
fgr	n 22193	missing 277345	unique 37	Mean 23.72	$.05 \\ 1$.10 .1	$ \begin{array}{ccc} 25 & .50 \\ 6 & 11 \end{array} $.75 32	.90 .95 84 85		l a ttitititititi	l. ,	1	. IL 11
lowest	t : 1	345	6, highe	st: 86 8	37 91 9	92 99								
abt	n 1757	missing 297781	unique 2											
BAD (1	1399, 8	0%), ZAH	(358, 20%	.)										

Variables with all observations missing: zeitraum

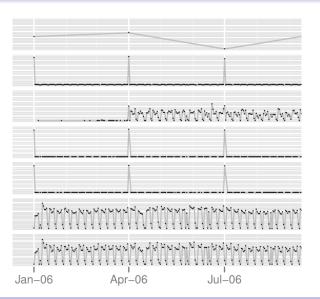
Approaching Data Quality 00


Solutions in GAP-DRG

Profiling: example 2

5.8.4 gebjahr

	herkunft	count	NULL	(%)
1	5	832.074	204.039	25~%
2	7	2.291.750	2.215.411	97~%
3	11	10.463.982	170.042	2~%
4	12	7.594.892	7.594.892	100~%
5	13	760.921	164.407	22~%
6	14	4.020.708	10.542	0 %
7	15	5.845.224	23.786	0 %
8	16	1.487.245	211.079	14~%
9	17	2.858.063	150.738	5 %
10	18	2.372.839	2.372.839	100~%
11	19	796.453	116.656	15~%
12	22	39.953	10.376	26~%
13	24	6.524	2.290	35~%
14	25	29.224	7.431	25~%
15	28	24.202	6.151	25~%
16	40	6.897.964	59.950	1~%
17	50	1.029.344	7.822	1 %


Profiling: prescriptions / insurer

Approaching Data Quality

Solutions in GAP-DRG

Profiling: prescriptions / insurer (detail)

Approaching Data Quality 00

Database Schema

- Common problems:
 - Are diagnosis (ICD10) valid? What is their meaning?
 - One patient, two places of residence at the same time: multiplication of associated records?
 - Varying date of birth
- ⇒ Normalisation & Referential Integrity

Approaching Data Quality 00

Database Schema

- Common problems:
 - Date of admission before separation?
 - Several hospital stays at the same time
 - Death before birth
 - Encoding of sex
- ⇒ Data Types & Constraints

DQA Reports

- Special "studies" conducted by experts
- Highly sophisticated
- Analyzing data with emphasis on quality
- Exploratory & knowledge driven (blind spots?)
- e.g. comparison of linked data with
 - demographic reports
 - health surveys
 - reported costs

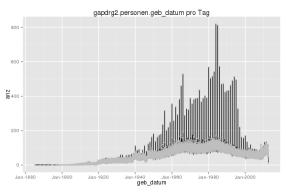
Approaching Data Quality 00

Solutions in GAP-DRG

Interactive Quality Assessment

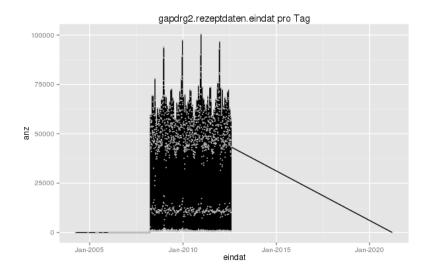
- Quality profiles are static
- Researchers are interested in
 - details
 - partitions of data
 - views without outliers
 - different levels of aggregation
 - fast (immediate) results
- 2 solutions:
 - interactive profiling
 - analysis of prescriptions
- Prototype: classification with perceptrons & ada boost
- R & shiny

Approaching Data Quality 00


Solutions in GAP-DRG

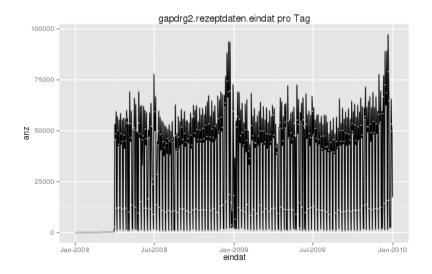
Interactive profiling: user interface

GAP-DRG2 Dates


personen: geb_datum

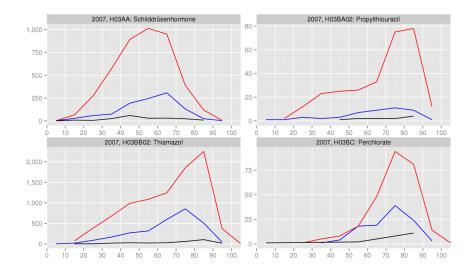
Approaching Data Quality 00

Solutions in GAP-DRG


Interactive profiling: example

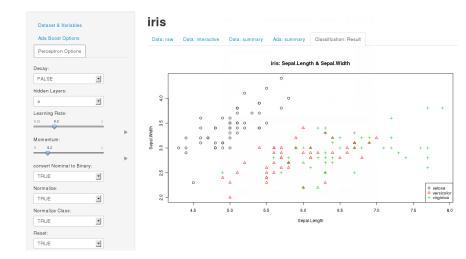
Approaching Data Quality 00

Solutions in GAP-DRG


Interactive profiling: example

Approaching Data Quality

Solutions in GAP-DRG


Analysis of prescriptions: example

Approaching Data Quality

Solutions in GAP-DRG

Classification (prototype!)

Understanding Data Quality in linked administrative data

Florian Endel¹

 $^1 {\rm Vienna}$ University of Technology, florian@endel.at

IHDL Conference Vancouver, 2014-04-30

