DO MODELS HELP FOR REIMBURSEMENT DECISIONS?

Endel G., Popper N., Zauner G., Breitenecker F.

asträger; Technical University of Vienna, dwh simulation services

STARTING POINT

PROBLEM

Different standards for HTAs

EUNetHTA Core model**

Modelling is no fixed content in an assessment***

Economic models are usually not transferable between countries

**Orummond M. Brandt A, Luce B, Rovira J. Standardizing methodologies for economic en
problems, and potential. Int J Technol Assess Health Care 1993; 9: 26-36.

- Takes time
- Costs money
- Results have to be explained and are often not understood
- Input defines the output

DOMAINS of HTA (EUNETHTA)

MODEL - DEFINITION

- 1. Current use of the technology (implementation level)
- Description and technical characteristics of technology
- Safety
- 3. Safety 4. Effectiveness
- 6. Ethical aspects
 7. Organisational
- Organisational aspects 8. Social aspects
- 9. Legal aspects

Eykhoff (1974) defined a mathematical model as ,a representation of the essential aspects of an existing system (or a system to be constructed) which presents knowledge of that system in usable form.

A mathematical model usually describes a system by a set of variables and a set of equa-

tions that establish relationships between the variables. Engineers can build a descriptive model of the system as a hypothesis of how the system could work, or try to estimate how an unforeseable event could affect the system. In general, model complexity involves a trade-off between simplicity and accuracy of the

model*.

Occam's Razor is a principle particularly relevant to modelling; the essential idea being that among models with roughly equal predictive power, the simplest one is the most desirable.

PRO

Explicit / transparent

- Reduction of complexity
- O Lack of evidence
- O Uncertainty
- O Parameters and ranges
- O Indirect comparison
- O Comparative effectivness
- O Relative effectivness

CON

- O Contraintuitive results possible
- O Complex methodology
- O "expert tool"
- Interpretation of results unclear
- O Predictive power unclear
- O Point estimates always false
- O Critical appraisal difficult O Costly / resource consuming

EXAMPLE

MODEL OF PVC-7 VACCINATION in AUSTRIA*

Vaccination reduces rates of carriers in population

Development for children under 10 years of age is shown

Dotted lines

Stable population assumed

Full lines:

Prognosis of population development according Statistik Austria - growth of

population due to immigration - is included

Markov model cannot show this effect

Differential equation model can incorporate population dynamics Agent based model can additionally reproduce herd immunity and serotyp shifting http://www.hauptverband.at/mediaDB/656180_Pneumokokken_Kinder_Simul_Bericht_15_02_2010_end.pdf (in Ge

EXPECTATION OF DECISION MAKERS

Point estimates are always wrong! - but

Support for formulary placement decisions by

- O Estimation of the financial impact O Estimation of health benefit
- O Priorisation by comparing relative value

PREFERENCES

- Software to test model themselves (MS-EXCEL preferred)
- Tailored model for the target population

 7 Tailored models: Managed Care decision makers perception and use; O'Day K., Reeder CE, Bramley T, Meissner B; ISPOR
- O Uncertainty is shown risk of a decision becomes apparent
- Lack of evidence is shown applications can be scrutynised and "promises" questio-ned

DISCUSSION

- O Questions can be adressed where RCTs or other real live trials are not possible
- O Comparative effectivness
- O Relative effectivness
- O Long time effects

CONCLUSION

CONTACT

GP FOR THE USE OF MODELS IS NEEDED

Use of models is complex and needs special knowledge. Willingness to pay threshhold should not be used, as point estimates are always false Sensitivity testing shows main influencing factors - Uncertainity and lack of evidence gets

Gottfried.endel@hvb.sozvers.at niki.popper@drahtwarenhandlung.at

gzauner@osiris.tuwien.ac.at

dwh simulation services

UNIVERSITÄT
WIEN
Vienna University of Technology